
Technische Universität Ilmenau
Fakultät für Mathematik und Naturwissenschaften
FG Diskrete Mathematik und Algebra

Quadratic Forms on Graphs

and Maximum Weighted Induced Subgraphs

Bachelorarbeit zur Erlangung des akademischen Grades Bachelor of Science

Samuel Mohr

Verantwortlicher Hochschullehrer:
Prof. Dr. rer. nat. habil. Jochen Harant,
FG Diskrete Mathematik und Algebra

Die Bachelorarbeit wurde am 18. November 2014 bei der Fakultät für Mathe-
matik und Naturwissenschaften der Technischen Universität Ilmenau einge-
reicht.



Abstracts

Abstract

Let G = (V,E) be a simple, finite, undirected graph with vertex set V (G) and edge set E(G).

An independent set of G is a subset I of vertices with no two of its members adjacent in G;

a well-studied combinatorial optimization problem is to find an independent set of maximal

cardinality.

Suppose there are weights assigned to the vertices; then a further issue is to find an independent

set having the largest total weight. This is called the maximum weight independent set problem.

The decision version of these problems are known to be NP-complete, and therefore the discus-

sion of bounds on the maximum total weight of independent sets is justified. A known lower

bound this work builds on was published by Gibbons, Hearn, Pardalos and Ramana in [6].

This Bachelor Thesis investigates quadratic forms on graphs motivated by a result of Motzkin

and Straus [13]. Using these results, an improvement of the bound by Gibbons et al. is derived.

Moreover, a generalization of weighted independence towards induced subgraphs of maximum

weight is presented and investigated.

Zusammenfassung

Gegeben sei ein einfacher, endlicher, ungerichteter Graph G = (V,E) mit Eckenmenge V (G) und

Kantenmenge E(G). Eine unabhängige Menge von G ist eine Teilmenge von V (G), in der je zwei

Ecken nicht adjazent in G sind. Ein oft untersuchtes kombinatorisches Optimierungsproblem ist

die Frage nach einer unabhängigen Menge maximaler Kardinalität.

Angenommen, den Ecken sind Gewichte zugewiesen, dann ist ein weiteres Problem, eine un-

abhängige Menge maximalen Gewichtes zu finden. Es ist bekannt, dass die Entscheidungsversion

dieser Probleme NP-vollständig ist, wodurch Untersuchungen von Schranken für das maxima-

le Gewicht unabhängiger Mengen gerechtfertigt sind. Eine bekannte Schranke, auf dem diese

Arbeit aufbaut, ist eine Veröffentlichung von Gibbons, Hearn, Pardalos und Ramana [6].

Diese Bachelorarbeit untersucht quadratische Formen auf Graphen, welche durch eine Arbeit

von Motzkin und Straus [13] motiviert sind. Mit den Ergebnissen kann die Schranke von Gibb-

ons und andere verbessert werden. Des Weiteren wird eine Verallgemeinerung der gewichteten

Unabhängigkeit zu maximal gewichteten induzierten Untergraphen untersucht.
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1 Introduction and Results

The independent set problem is a well-known example of a combinatorial optimization problem.

Given a simple, finite, undirected graph G = (V,E) with vertex set V (G) and edge set E(G), the

problem is to find an independent set of maximal cardinality. An independent set is a subset I

of vertices of G with no two of its members adjacent in G; the maximum cardinality is denoted

by the independence number α(G).

The independence number belongs to the most fundamental and well-studied graph parameters;

not only because the decision version of it was one of the first problems shown to be NP-

complete in Karp’s original paper on computational complexity [9]. In view of its computational

complexity [4, 8] it is justified to deal with bounds on these numbers, primarily with lower

bounds. Many known lower bounds for the independence number can be found in literature and

there are internet projects for it [12].

The results of this Bachelor Thesis will be published as a joint work with Prof. Dr. Jochen

Harant [7].

1.1 Results

As an approach to get bounds, various attempts have been made to replace the combinatorial

optimization problems by continuous ones.

An example is the following result of T. S. Motzkin and E. G. Straus [13]:

Statement 1 (Result of T. S. Motzkin and E. G. Straus [13])

There is an independent set I of G such that

|I| ≥

∑
i∈V (G)

xi

2

∑
i∈V (G)

x2
i + 2

∑
ij∈E(G)

xixj
(1.1)

for all real xi ≥ 0 with i ∈ V (G), satisfying
∑

i xi 6= 0.

A generalization of the maximum independent set problem arises when weights are assigned to

the vertices. In this case the problem is to find an independent set of maximum weight. This

is called the maximum weight independent set problem. Thus, let wi be the weight of vertex

i ∈ V (G), and we denote the weight for a subset S of vertices of G as w(S) =
∑
i∈S

wi.

Gibbons et al. generalised Statement 1 to weighted independence in their paper “Continuous

characterizations of the maximum clique problem” [6]. Their result is the following:
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Statement 2 (Result of L. E. Gibbons et al. [6])

Let wi > 0 for i ∈ V (G). Then there is an independent set I of G such that

w(I) ≥

∑
i∈V (G)

xi

2

∑
i∈V (G)

x2
i

wi
+
∑

ij∈E(G)

(
1
wi

+ 1
wj

)
xixj

(1.2)

for all real xi ≥ 0 with i ∈ V (G), satisfying
∑

i xi 6= 0.

In the following we investigate the impact of the result in Statement 2 with regard to some

improvements or generalizations. Two main results will be obtained.

It is possible to improve Statement 2; this is denoted in Theorem 1. Another question arising

is whether there is a concept of generalizing the weighted independence. A possible approach is

shown later, and a bound comparable to Statement 2 is provided in Theorem 2.

Theorem 1

Let wi > 0 for i ∈ V (G). Then there is an independent set I of G such that

w(I) ≥

∑
i∈V (G)

xi

2

∑
i∈V (G)

x2
i

wi
+
∑

ij∈E(G)

max
{

1
2wi

+ 1
wj
, 1
wi

+ 1
2wj

,min
{

2
wi
, 2
wj

}}
xixj

(1.3)

for all real xi ≥ 0 with i ∈ V (G), satisfying
∑

i xi 6= 0.

Note that max
{

1
2wi

+ 1
wj
, 1
wi

+ 1
2wj

,min
{

2
wi
, 2
wj

}}
≤ 1

wi
+ 1

wj
for all ij ∈ E(G); hence, the

denominator is smaller in case that there are edges ij ∈ E(G) with wi 6= wj , and (1.3) would be

an improvement of (1.2) in that case.

For the convenience of the reader, we skip the explanation of the used terminology for the rest of

this section at this point and go on by facing the question of generalised weighted independence.

The reader is referred to section 1.2 for notations and terminology.

Obviously, a vertex set I of G is independent if and only if the subgraph G[I] induced by I is

K2-free. An approach would be to characterise the “generalised independent sets” by F-free

induced subgraphs. Instead of edgeless subgraphs, we will investigate the problem of finding an

F-free induced subgraph H of G of maximum weight w(H).

That this idea is favourable can be argued because there are many classes of graphs that can

be described in terms of a collection of forbidden subgraphs. For further details, we refer the

reader to collections of graph classes [2, 14].
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Note that the complementary graph G of G contains an induced subgraph H of weight w(H) =

w(H) if G contains an induced subgraph H of weight w(H), i. e. the translation of the following

results into the “complementary version” will be omitted.

Let the real numbers bij be the weight of the edge ij ∈ E(G). For F being an arbitrary graph

we define the condition C(F ) linking a restriction on the parameters wi and bij to a property

of the induced subgraph H.

Definition (C(F ))

For each induced subgraph U of G isomorphic to F there is a proper vertex partition of V (U)

into V1 and V2 fulfilling the inequality

ν2
2

∑
i∈V (U1)

1

wi
+ ν2

1

∑
i∈V (U2)

1

wi
+ ν2

2

∑
ij∈E(U1)

bij + ν2
1

∑
ij∈E(U2)

bij ≤ ν1ν2

∑
ij∈E∗

bij , (C(F ))

where U1 = U [V1] and U2 = U [V2] denote the induced subgraphs on ν1 ≥ 1 and ν2 ≥ 1 vertices,

respectively. E∗ = {ij ∈ E(U) : i ∈ V1, j ∈ V2} is the set of edges of U between V1 and V2.

Even if this condition seems to be complicated at first sight, it is easily manageable as one can

see in section 1.3, when the impact of it will be exemplified alongside some simplifications. Note

that if G itself is F -free, then there is no induced subgraph U in G isomorphic to F ; thus, C(F )

is fulfilled.

For the generalised weighted independence problem a lower bound on the weight of a maximum

weighted F-free induced subgraph H is denoted in the following Theorem 2.

Theorem 2

Let F = {F1, . . . , Fp} be a finite family of graphs with K1 /∈ F , and let wi > 0 for i ∈ V (G)

and bij ≥ 0 for ij ∈ E(G) be the weights on the vertices and egdes. Denote the minima over

the edge and vertex weights by b = min
ij∈E(G)

bij and w = min
i∈V (G)

wi, respectively.

If C(F1), . . . , C(Fp) are fulfilled, then there is an F-free induced subgraph H of G such that

w(H)− bw

2 + bw
·
∑

i∈V (H),
dH(i)≥1

wi ≥

∑
i∈V (G)

xi

2

∑
i∈V (G)

x2
i

wi
+
∑

ij∈E(G)

bijxixj

(1.4)

for all real xi ≥ 0 with i ∈ V (G), satisfying
∑

i xi 6= 0.

We will clarify the proposition of this theorem after a short overview of used terminology. First,

the condition C(F ) is investigated in section 1.3, some examples exemplify this condition and the

meaning of F -free for certain graphs F is shown. In section 1.4, some known lower bounds are

presented and compared with ones derived from Theorem 2 by suitably setting xi for i ∈ V (G).

The proofs will be given in chapter 2.
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1.2 Terminology

We use standard notation and terminology of graph theory; for further details, we refer the reader

to “Combinatorial Optimization” by Korte and Vygen [11]. In the following some standard

definitions are repeated.

Consider a simple, finite, undirected graph G = (V,E) with vertex set V (G) and edge set

E(G). The neighbourhood and the degree of i ∈ V (G) are denoted by NG(i) and dG(i) =

|NG(i)|, respectively. Let δ(G) and ∆(G) be the minimum degree and the maximum degree of

G, respectively.

The complementary graph G of the graph G has vertex set V (G) = V (G) and edge set ij ∈ E(G)

if and only if ij /∈ E(G).

If ij ∈ E for every pair ij with i, j ∈ V , then G is called a complete graph. A complete graph

on r ∈ N vertices is denoted by Kr.

A vertex partition divides V (G) into two sets V1 and V2 such that V1∪V2 = V (G) and V1∩V2 = ∅.
We say it is proper if |V1| ≥ 1 and |V2| ≥ 1.

A bipartite graph on A and B has a proper vertex partition into A and B with all edges e ∈ E
join vertices belonging to the distinct sets, i. e. e = ij then i ∈ A, j ∈ B or vice versa. A

bipartite graph will be called to be complete if there is an edge ij ∈ E for all i ∈ A, j ∈ B. It is

denoted by Ka,b, where |A| = a and |B| = b.

Let S be a subset of V (G). A subgraph of G is a graph H with V (H) = S ⊆ V (G) and

E(H) ⊆ E(G). H is called an induced subgraph of G if E(H) = {xy ∈ E(G) : x, y ∈ S}, and

it is denoted as H = G[S].

Two graphs G and G′ are called to be isomorphic if there are bijections φV : V (G) → V (G′)

and φE : E(G)→ E(G′) such that φE(vw) = {φG(v), φG(w)} for each edge vw ∈ E(G).

Let F be a family of graphs. An induced subgraph of G is F-free if it contains no induced

subgraph being isomorphic to a member of F . Since a graph with more vertices than G cannot

be an induced subgraph of G, we assume that F is a finite set of finite, simple, undirected and

pairwise non-isomorphic graphs. We write F -free instead of F-free if F = {F}.

For i, j ∈ V an i-j-walk W in G is a sequence (i = x0, e1, x1, e2, . . . , xr−1, er, xr = j) with r ≥ 1

such that xk ∈ V (G) for k = 0, . . . , s, ek = xk−1xk ∈ E(G) for k = 1, . . . , r and ek 6= el for k 6= l.

An i-j-path P is a subgraph P = ({x0, . . . xr}, {e1, . . . , er}) of G if (x0, e1, x1, e2, . . . , xr−1, er, xr)

is an i-j-walk with mutually distinct vertices xk. The length of P is the number of vertices in

P , that is |V (P )|. An i-j-path P will be called to be shortest if there is no i-j-path with a

smaller length than P . An arbitrary path on r ∈ N vertices is denoted by Pr. A circuit C is a

subgraph C = ({x1, . . . xr}, {e1, . . . , er}) of G if (x0, e1, x1, e2, . . . , xr−1, er, xr) with x0 = xr is a

closed walk with mutually distinct vertices xk. An arbitrary circuit on r ∈ N vertices is denoted

by Cr.

A graph G is connected if there is an i-j-path for all i, j ∈ V . The maximal connected subgraph

of G with respect to the number of vertices are its components.

A subset I of vertices of G is independent if no two of its members are adjacent in G. The

induced subgraph G[I] of G by I is called an edgeless graph. A maximum independent set is an

independent set with most elements among all independent sets, its cardinality is denoted by

the independence number α(G).
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A subset J of vertices of G is called a clique of G if its induced subgraph G[J ] is a complete

graph. The clique number ω(G) is the maximum cardinality among all cliques of G, which is

the independence number of the complementary graph α(G).

For a graph G let w : V (G)→ R be a vector of vertex weights. We shortly write wi := w(i) for

i ∈ V (G). Given a subset S of vertices of G and an induced subgraph H of G, we define the

weight of S and H as w(S) =
∑
i∈S

wi and w(H) =
∑

i∈V (H)

wi, respectively.

1.3 Simple edge conditions

In Theorem 2 the condition C(F ) is used. To make the reader familiar with the condition, let

us consider a few examples.

Example 1.3.1 We start with a small graph.

For this, let F be a single edge, that is the K2. There is only

one way of dividing the vertices into two sets in order to get a

proper partition.

Then C(K2) is fulfilled if for all kl ∈ E(G)

1

wk
+

1

wl
≤ bkl

holds.

U1 U2

U :
k l

Remark 1.3.2 A vertex set I of G is independent if and only if its induced subgraph G[I] is

edgeless, and this is the case if G[I] is K2-free. Hence, let bij = 1
wi

+ 1
wj

for ij ∈ E(G), and

Statement 2 follows directly from Theorem 2. Note that in this case the sum of the left side of

the inequality is zero, and only w(H) remains.

Setting additionally wi = 1 for all i ∈ V (G), Statement 1 follows immediately.

The condition C(F ) is used for Theorem 2. If it is fulfilled, then there is an F -free induced

graph H of G. Let us consider the condition C(P3) of a path on three vertices and its meaning

for the subgraph H in Theorem 2.

Lemma 1.3.3 (Lemma about P3-free graphs)

Let T be an arbitrary graph. If T does not contain P3 as an induced subgraph, then T is the

induced union of complete graphs, i. e. all of its components are complete graphs.

Proof: Let T ′ be an arbitrary component of T . Assume T ′ is not complete, then there is

i, j ∈ V (T ′) with ij /∈ E(T ′). Let P be a shortest i-j-path.

If P is of length 3, then P is an induced P3 of T , a contradiction. Therefore the path

P = (i, e1, x, e2, y, e3, . . . , j) is at least of length 4. Consider R = (i, e1, x, e2, y). If iy /∈ E(T ),

then T contains a P3 as an induced subgraph, a contradiction. Else, e′ = iy ∈ E(T ), and

P ′ = (i, e′, y, e3, . . . , j) is a shorter i-j-path, a contradiction to the choice of P .

Thus, all components of T are complete graphs. �
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Example 1.3.4 Let F be a path on three vertices, that is the P3.

If for every induced path P = ({k, l,m}, {kl, lm}) of G on three

vertices the inequality

1

wk
+

4

wl
+

1

wm
≤ 2(bkl + blm)

holds, then C(P3) is fulfilled, and H can be chosen as an induced

union of complete subgraphs of G.
U1 U2

U :
l

k

m

Remark 1.3.5 Consider again C(P3):

1

wk
+

4

wl
+

1

wm
≤ 2(bkl + blm).

It can be laborious to check whether C(F ) is fulfilled for given graphs G and F . Therefore,

it may be useful to consider edge conditions. An edge condition for an edge kl ∈ E(G) is a

simple condition on the three parameters ak, al and bkl such that if it holds for all edges in

G then it implies C(F ). We try to replace all conditions C(F ) by these sufficient conditions

because they directly propose a choice for the parameters bij in Theorem 2.

For example if bij ≥ max
{

1
2wi

+ 1
wj
, 1
wi

+ 1
2wj

}
holds for all ij ∈ E(G), then C(P3) is fulfilled.

Using Theorem 2, the following lower bound on the weight of the union of cliques can be derived.

Note that the bij are set according to the edge condition.

Remark 1.3.6 Let wi > 0 for i ∈ V (G), and let w and b denote the minima of the vertex and

edge weights, respectively; i. e.

w = min
i∈V (G)

wi, and b = min
ij∈E(G)

max

{
1

2wi
+

1

wj
,

1

wi
+

1

2wj

}
.

Then there are r ∈ N and disjoint cliques H1, . . . ,Hr of G such that

r∑
s=1

w(Hs)−
bw

2 + bw
·
∑

s∈{1,...,r},
|V (Hs)|≥2

w(Hs) ≥

∑
i∈V (G)

xi

2

∑
i∈V (G)

x2
i

wi
+
∑

ij∈E(G)

max
{

1
2wi

+ 1
wj
, 1
wi

+ 1
2wj

}
xixj

for all real xi ≥ 0 with i ∈ V (G), satisfying
∑

i xi 6= 0.

Proof: Set bij = max
{

1
wi

+ 1
2wj

, 1
wi

+ 1
2wj

}
for all ij ∈ E(G), then C(P3) is fulfilled by

Remark 1.3.5, and Theorem 2 can applied. �

Until now, we have only treated the condition C(F ) for one graph F . By combining several

conditions it is possible to exclude a family F of subgraphs from being induced subgraphs of H.

For example consider some graphs on four vertices in Example 1.3.7. Let F be a complete K4

that is missing an edge. If C(K1,3), C(C4), C(P4) and C(F ) are fulfilled, then H can be chosen

to be {K1,3, C4, P4, F}-free. The subsequent Lemma 1.3.8 will show that all components of H

are complete graphs or graphs consisting of two complete graphs with one common vertex.
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Example 1.3.7 If for every connected induced subgraph U of G on four vertices with vertex

set V (U) = {i, j, k, l} the subgraph U is isomorphic to . . .

a claw K1,3, and

9

wi
+

(
1

wj
+

1

wk
+

1

wl

)
≤ 3(bij + bik + bil)

holds, where dU (i) = 3, then C(K1,3) is fulfilled.
U1 U2

U :
i

j

k

l

a circuit C4, and

1

wi
+

1

wj
+

1

wk
+

1

wl
≤ bij + bjk + bkl + bli

holds, then C(C4) is fulfilled.
U1 U2

U :
i j

k l

a path P4, and

1

wi
+

1

wj
+

1

wk
+

1

wl
≤ bij + bjk + bkl

holds, then C(P4) is fulfilled.
U1 U2

U :
i j

k l

a complete subgraph that is missing an edge, and

1

wi
+

1

wj
+

1

wk
+

1

wl
+ bik ≤ bij + bjk + bkl + bli

holds, where dU (i) = dU (k) = 3, then C(F ) is fulfilled.
U1 U2

U :
i j

k l

Lemma 1.3.8 (Lemma about some 4-vertex-graph-free subgraphs)

Let T be an arbitrary graph and F be a complete K4 that is missing an edge. If T is

{K1,3, C4, P4, F}-free, then the components of T are complete graphs or graphs consisting of

two complete graphs with one common vertex.

Proof: Let T ′ be an arbitrary component of T . Note that if |T ′| ≤ 3, T ′ is either K1, K2,

P3, or K3. This would not be a contradiction to the assertion. Thus, let |T ′| ≥ 4.

If T ′ does not contain P3 as induced subgraph, then, according to Lemma 1.3.3, T ′ is complete.

Else, consider a P3 yxz.

Let Y be the neighbourhood of y except x, i. e. Y = NT (y) \ {x}. Then Y is a subset of

NT (x). Otherwise there is a ∈ Y , a /∈ NT (x), thus ayxz and ayxza are a P4 and a C4,

respectively, depending whether az ∈ E(T ) or not.

Further Y ∪{x, y} is complete. Otherwise there is a missing edge ij /∈ E(Y ), i, j 6= x, y. Then

the induced subgraph R = T ′[{x, y, i, j}] is a K4 without the missing edge ij, a contradiction.

Analogously, NT (z) ∪ {z} is complete, too.

Note that the neighbourhood of x is included in NT (y) ∪ {y} ∪NT (z) ∪ {z}, otherwise there

would be another neighbour u of x, and {y, z, u} are not adjacent. However, they would form

a claw with x, a contradiction.

Consequently, the vertices of T ′ are NT (y)∪ {y} and NT (z)∪ {z}. Consider the intersection

I := (NT (y) ∪ {y}) ∩ (NT (z) ∪ {z}), then I = {x}. Otherwise with u ∈ I, uyxzu is a C4, a

contradiction.
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Thus, T ′ exists of two complete graphs with one common vertex x, and T is as asserted. �

Similarly to Remark 1.3.6, a bound can be describe for the weight of an induced subgraph whose

components are complete graphs or graphs consisting of two complete graphs with one common

vertex.

After considering C(F ) for some graphs, a summary of C(F ) for certain graphs F alongside

some simple sufficient conditions is listed.

Table 1.3.9

This table lists for some small graphs the conditions C(F ) and a sufficient one, being an edge

condition if possible.

F condition C(F ) vertex partition sufficient (simple edge) condition

K2
1
wk

+ 1
wl
≤ bkl

U1 U2

U :
k l

K2
1
wk

+ 1
wl
≤ 0

U1 U2

U :
k l

1
wi
< 0 for all i ∈ V (G)

P3
1
wk

+ 4
wl

+ 1
wm
≤ 2(bkl+blm)

U1 U2

U :
l

k

m

bij ≥ max
{

1
2wi

+ 1
wj
, 1
wi

+ 1
2wj

}
for all ij ∈ E(G)

K3

4
wk

+ ( 1
wl

+ 1
wm

) + blm ≤

2(bkl + bkm)
U1 U2

U :
k

l

m

2
(

1
wk

+ 1
wl

+ 1
wm

)
≤

bkl + bkm + blm for all triangles

U = ({k, l,m}, {kl, km, lm})

K1,3

9
wi

+ ( 1
wj

+ 1
wk

+ 1
wl

) ≤

3(bij + bik + bil)
U1 U2

U :
i

j

k

l

bij ≥ max
{

1
3wi

+ 1
wj
, 1
wi

+ 1
3wj

}
for all ij ∈ E(G)

C4

1
wi

+ 1
wj

+ 1
wk

+ 1
wl
≤

bij + bjk + bkl + bli
U1 U2

U :
i j

k l

bij ≥ 1
2wi

+ 1
2wj

for all ij ∈ E(G)

P4

1
wi

+ 1
wj

+ 1
wk

+ 1
wl
≤

bij + bjk + bkl
U1 U2

U :
i j

k l

bij ≥ max
{

1
wi
, 1
wj

}
for all

ij ∈ E(G)

Finally, we will show that our approach also leads to reasonable results if G itself has a property

characterised by forbidden induced subgraphs.
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Remark 1.3.10 Note that the condition C(F ) is also fulfilled if G itself is F -free.

Similarly to Example 1.3.7, bij ≥ 1
2wi

+ 1
2wj

for ij ∈ E(G) implies that C(F ) holds for every

even circuit F . Thus, if G is bipartite and bij ≥ 1
2wi

+ 1
2wi

for ij ∈ E(G) then H in Theorem 2

can be chosen to be a forest.

If additionally bij ≥ max{ 1
3wi

+ 1
wj
, 1
wi

+ 1
3wj
} holds for every ij ∈ E(G) then, by Table 1.3.9,

the subgraph H is K1,3-free, that is claw-free. H is circuit-free and claw-free; hence, dH(i) ≤ 2

for i ∈ V (H), and H is a linear forest.

Let the forest H consist of r ∈ N trees denoted by H1, . . . ,Hr, and let

c(U) =

{
1, |V (U)| = 1

2
2+bw , |V (U)| ≥ 2

for U being an induced subgraph of G.

Then we get the following bound from Theorem 2, where b = min
ij∈E(G)

bij and w = min
i∈V (G)

wi:

r∑
s=1

c(Hs)w(Hs) ≥

∑
i∈V (G)

xi

2

∑
i∈V (G)

x2
i

wi
+
∑

ij∈E(G)

bijxixj

for all real xi ≥ 0 with i ∈ V (G), satisfying
∑

i xi 6= 0.

Remark 1.3.11 As we have seen we can derive many classes of induced subgraphs by freely

setting F . But this is the only possibility to demand properties on the subgraphs. Thus, it

is not possible to make some preconditions on the connectivity. The K1 is always an F-free

subgraph; hence, we cannot get rid of the case |V (Hs)| = 1 in Remark 1.3.6 and 1.3.10.

1.4 Known Bounds

In the proceeding section Theorem 2 is explained with regard to specify the searched subgraph,

which is characterised by forbidden induced subgraphs; this is done by the conditions C(F )

leading to a choice for the edge weights bij of the edges ij ∈ E(G).

In this section we show how to derive a lot of lower bounds on w(H) by suitable choice of real

numbers xi for i ∈ V (G).

There exists a great amount of bounds for the independence and clique number; they are proofed

in different manners like probabilistic method as well as constructive by an algorithm. As an

example, let us improve the famous bound

CW (G) =
∑

i∈V (G)

1

dG(i) + 1

in the case of graphs with at least one non-regular component. This bound was independently

proofed by Y. Caro and V. Wei ([3, 17]).
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Corollary 1.4.1

With xi = 1
dG(i)+1 for i ∈ V (G) we obtain the following lower bound on α(G) from Statement 2:

α(G) ≥ CW (G)2

CW (G)−
∑

ij∈E(G)

(
1

dG(i)+1
− 1

dG(j)+1

)2 . (1.5)

Proof: Set xi = 1
dG(i)+1 and wi = 1 for i ∈ V (G), then according to Statement 2:

α(G) ≥

 ∑
i∈V (G)

1

dG(i) + 1

2

∑
i∈V (G)

(
1

dG(i)+1

)2
+ 2

∑
ij∈E(G)

(
1

dG(i)+1

)(
1

dG(j)+1

)

=

 ∑
i∈V (G)

1

dG(i) + 1

2

∑
i∈V (G)

(
1

(dG(i)+1)2 + dG(i)
(dG(i)+1)2

)
+ 2

∑
ij∈E(G)

((
1

dG(i)+1

)(
1

dG(j)+1

)
− 1

2

(
1

dG(i)+1

)2
− 1

2

(
1

dG(j)+1

)2)

=

 ∑
i∈V (G)

1

dG(i) + 1

2

∑
i∈V (G)

1
dG(i)+1 + 2

∑
ij∈E(G)

(
− 1

2

(
1

dG(i)+1 −
1

dG(j)+1

)2) ,

where the first equality sign makes use of∑
i∈V (G)

dG(i)ti =
∑
ij∈E(G)

(ti + tj)

for any real numbers ti with i ∈ V (G). This equation can be considered as the simplest

version of the charging-discharging method. �

Next, we will consider the maximum weight independent set problem. Some known results are

provided and Statement 2 leads to some improvements of existing lower bounds. For this, let I

be an independent set of G of maximum weight w(I) =
∑
i∈I

wi.

In [15], S. Sakai, M. Togasaki and K. Yamazaki gave two algorithms each providing a lower

bound for w(I):

w(I) ≥ B1(G) :=
∑

i∈V (G)

wi
dG(i) + 1

(1.6)
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and

w(I) ≥ B2(G) :=
∑

i∈V (G)

∑
k∈NG(i)∪{i}

wk. (1.7)

Both inequalities are generalizations of the Caro-Wei bound α(G) ≥
∑

i∈V (G)

1
dG(i)+1 ([3, 17]).

Using Statement 2, we define some lower bounds for w(I), the maximum weight among inde-

pendent sets of G. In some cases they are slightly better than these in (1.6) and (1.7) considered

in [15].

Corollary 1.4.2

If wi > 0 for i ∈ V (G) and I is an independent set of G of maximum weight w(I) =
∑
i∈I

wi,

then with xi = wi
dG(i)+1 we obtain by Statement 2:

w(I) ≥ B1(G)
2

B1(G)−
∑

ij∈E(G)

(
1

dG(i)+1
− 1

dG(j)+1

)(
wi

dG(i)+1
− wj

dG(j)+1

) . (1.8)

Proof: Set xi = wi
dG(i)+1 , then by Statement 2:

w(I) ≥

 ∑
i∈V (G)

wi

dG(i) + 1

2

∑
i∈V (G)

wi

(dG(i)+1)2 +
∑

ij∈E(G)

( 1
wi

+ 1
wj

)
wiwj

(dG(i)+1)(dG(j)+1)

=

 ∑
i∈V (G)

wi

dG(i) + 1

2

∑
i∈V (G)

(
wi

(dG(i)+1)2 + dG(i)wi

(dG(i)+1)2

)
+
∑

ij∈E(G)

(
( 1
wi

+ 1
wj

)
wiwj

(dG(i)+1)(dG(j)+1) −
wi

(dG(i)+1)2 −
wj

(dG(j)+1)2

)

=

 ∑
i∈V (G)

wi

dG(i) + 1

2

∑
i∈V (G)

wi

dG(i)+1 −
∑

ij∈E(G)

( 1
dG(i)+1 −

1
dG(j)+1 )( wi

dG(i)+1 −
wj

dG(j)+1 )
.

�

Remark 1.4.3 Suppose the sum∑
ij∈E(G)

(
1

dG(i) + 1
− 1

dG(j) + 1

)(
wi

dG(i) + 1
− wj
dG(j) + 1

)
> 0,

is positive then Corollary 1.4.2 is stronger than inequality (1.6). For example, this is the case

if G is non-regular and dG(i)+1
dG(j)+1 <

wi
wj

for all edges ij ∈ E(G) with dG(i) < dG(j).
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Next, we investigate the other bound B2(G).

Corollary 1.4.4

If wi > 0 for i ∈ V (G) and I is an independent set of G of maximum weight w(I) =
∑
i∈I

wi,

then with xi =
w2

i∑
k∈N(i)∪{i}

wk
we obtain by Statement 2:

w(I) ≥ B2(G)
2

B2(G)− S
(1.9)

where S :=
∑

i∈V (G)

w2
i ·

∑
k∈N(i)

wk ∑
k∈N(i)∪{i}

wk

2 −
∑

ij∈E(G)

wiwj(wi + wj) ∑
k∈N(i)∪{i}

wk

 ∑
k∈N(j)∪{j}

wk

 .

Proof: Set xi =
w2

i∑
k∈N(i)∪{i}

wk
, and proceed analogously as in the proof of Corollary 1.4.2. �

Remark 1.4.5 If S in Corollary 1.4.4 is positive, then this bound for the weight of the inde-

pendent set I is stronger than inequality (1.7).

After considering an example for a bound on the independence number and two examples for a

bound on the weight of a maximum weighted independent set, where an abundance of bounds

exists, we turn to the more general cases. It has not yet been possible to us to find some results

investigating bounds on the weight of induced subgraphs other than edgeless ones, referring to

independence, or complete ones, which can be translated to a clique.

Even though we cannot evaluate the main results of bounds for the weight of general induced

subgraphs, let us consider a bound on the weight of H for the case that H is an induced union

of complete subgraphs as an example.

Example 1.4.6 Let wi > 0 for i ∈ V (G), and let w and b denote the minima of the vertex

and edge weights, respectively; i. e.

w = min
i∈V (G)

wi, and b = min
ij∈E(G)

max

{
1

2wi
+

1

wj
,

1

wi
+

1

2wj

}
.

Then with xi = wi there are r ∈ N and disjoint cliques H1, . . . ,Hr of G such that

r∑
s=1

w(Hs)−
bw

2 + bw
·
∑

s∈{1,...,r},
|V (Hs)|≥2

w(Hs) ≥
w(G)2

w(G) +
∑

ij∈E(G)

max
{

1
2
wi + wj, wi +

1
2
wj
} .

Proof: Set xi = wi for i ∈ V (G) and use Remark 1.3.6, which has been derived from

Theorem 2. �

Note that the xi have been set freely. More and possibly better bounds can be derived by

distinct choices of xi.
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1.5 Algorithm

Let wi > 0 for i ∈ V (G), bij ≥ 0 for ij ∈ E(G) and F = {F1, . . . , Fp} be a finite family of

graphs with K1 /∈ F . If C(F1), . . . , C(Fp) are fulfilled then there is for fixed F and fixed graph

G a polynomial time algorithm expecting a vector x with xi ≥ 0 for i ∈ V (G) and delivering an

F-free induced subgraph H of G fulfilling

w(H) ≥

∑
i∈V (G)

xi

2

∑
i∈V (G)

x2
i

wi
+
∑

ij∈E(G)

bijxixj

. (1.10)

Algorithm 1: Algorithm for a bound on w(H)

Input: Vector x with real xi ≥ 0 for i ∈ V (G), satisfying
∑

i xi 6= 0.
Output: An F-free induced subgraph H of G fulfilling the inequality (1.10).

1 x ← x; H ← getH(x);
2 while there is an induced subgraph F ′ of H isomorphic to an F ∈ F do
3 x ← generateNewVector(x,F ′);
4 H ← getH(x);

5 end

The algorithm consists of two subroutines. The first one is to find an induced subgraph F ′ of

H isomorphic to some F ∈ F in step 2; the second one is to get a new vector x such that the

depending induced subgraph H does no longer contain F ′. An explicit description of these steps

can be found in the section 2.1.

Because F is a finite family of graphs, the first subroutine can be broken down into the following

problem for each graph F ∈ F : Find an induced subgraph F ′ of H isomorphic to the graph F .

The general case of this problem is chiefly solved by a brute-force-algorithm, for example see

[16]. Choosing a set S of |V (F )| vertices of H, the question is whether H[S] is isomorphic to F .

For more details on the isomorphism problem, we refer the interested reader to [5]. There are(
|V (H)|
|V (F )|

)
= O

(
|V (H)||V (F )|) possible combinations for choosing S. The isomorphism problem

is independent of |V (H)|; hence, it is solvable in O(1).

Note that for some small graphs on less or equal than four vertices, there are algorithms with

a slightly better time complexity; for further details see [10]. Thus, step 2 in Algorithm 1 is

solvable in at most O (|V (H)|m), where m = max
F∈F
|V (F )|.

Steps 3 and 4 are solvable O(1). In each iteration the induced subgraph H is reduced by at least

one vertex; thus, the loop will be executed at most |V (H)| times. Therefore, an F-free induced

subgraph H of G fulfilling the inequality (2) can be constructed in O
(
|V (H)|m+1

)
. All these

assertions will be proofed in section 2.1.



2 Proofs

Henceforth, let G = (V,E) be a simple, finite, undirected graph with vertices V (G) and edge set

E(G), and let U always be an arbitrary induced subgraph of G. Then SU denotes the set of all

real n-dimensional vectors x with entries xi for i ∈ V (G) such that xi = 0 for i ∈ V (G) \ V (U),

xi ≥ 0 for i ∈ V (U) and
∑

i∈V (U)

xi = 1.

For given x ∈ SU let H = Hx denote the induced subgraph of U obtained by deleting the vertices

i ∈ V (U) with xi = 0, i. e. Hx = U [Xx] where Xx = {i ∈ V (U) : xi > 0}.

In [13] the discussion is extended to quadratic forms. They investigate

x 7→
∑
i∈V (G)

dG(i)x
2
i + b

∑
ij∈E(G)

xixj ,

where b ∈ R is a real number and x ∈ SG. The maximum over SG of this quadratic form is

determined and partial results for the minimum are presented.

For the graph G let real numbers ai for i ∈ V (G) and bij for ij ∈ E(G) be given. Henceforth,

we identify ai = 1
wi

for the vertex weights wi already mentioned. The parameters bij , ij ∈ E(G)

keep their meaning from the first chapter. We will shortly talk about a’s and b’s instead of ai
for all i ∈ V (G) and bij for all ij ∈ E(G), respectively.

Motivated by the results in [13], we consider the quadratic form

φU(x) =
∑

i∈V (U)

aix
2
i +

∑
ij∈E(U)

bijxixj (2.1)

for an induced subgraph U of G.

Further, let

f(U) = min
x∈SU

φU (x) (2.2)

and

g(U) = max
x∈SU

φU (x), (2.3)

denote the minimum and maximum of φU over the set SU , respectively. Note that SU is a

compact subset of Rn, and φU is continuous; hence, f and g are well defined.

In section 2.1 we start with some general properties of the optimization problem. Thereafter,

the optimal solutions x ∈ SG are investigated and the meaning for the depending subgraph Hx

is exemplified. We conclude with the proof of Theorem 2. With these results we try to calculate
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f(G) for some special cases in section 2.2. This includes a generalization of Theorems 4 and 5

in T. S. Motzkin’s and E. G. Straus’s paper [13]. Finally, a proof of Theorem 1 is given.

2.1 Optimal solutions and the proof of Theorem 2

We start this section with some simple properties of φG and f . For this, consider the following

lemma:

Lemma 2.1.1 (Properties of f)

a) Let T be an induced subgraph of U and x ∈ ST . Then x ∈ SU .

b) Let x ∈ SU , then φG(x) = φU (x).

c) Let x ∈ SU . If Hx = U [Xx], then φG(x) = φHx(x).

d) If T is an induced subgraph of U , then f(U) ≤ f(T ).

e) Denote by a the minimum of all a’s, then f(G) ≤ a.

f) Let f(·) also vary in the parameters a’s and b’s. Then f(U) is continuous in all these

parameters.

Proof: In this proof let T be an induced subgraph of U .

a) For x ∈ ST we see xi = 0 for all i ∈ V (G) \ V (T ); thus, xi = 0 for all i ∈ V (G) \ V (U);

hence, x ∈ SU .

b) For x ∈ SU it holds

φG(x) =
∑

i∈V (U)

aix
2
i +

∑
i/∈V (U)

aix
2
i︸ ︷︷ ︸

=0

+
∑
ij∈E(U)

bijxixj +
∑

ij∈E(G)\E(U)

bijxixj︸ ︷︷ ︸
=0

= φU (x),

because U is an induced subgraph of G.

c) For x ∈ SU let Hx again be the induced subgraph of G obtained by deleting the vertices

i ∈ V (G) with xi = 0. Then x ∈ SHx , and b) proofs the assertion.

d) Let x ∈ ST be a minimal solution of φT , i. e. φT (x) = f(T ), and Hx = T [Xx] be the

induced subgraph of T . Then we obtain

f(T ) = φT (x)
a), b)

= φU (x) ≥ f(U).

e) Let a = mini ai, chose i ∈ V (G) so that ai = a, and let x ∈ SG with xi = 1, and xj = 0

for j 6= i otherwise. Then f(G) ≤ φG(x) = ai = a.

f) f(G) = min
x∈SG

φG(x) is a parametric optimization problem with constant feasible set. These

problems are continuous in their parameters, so is f(·). A proof for this assertion can be

found in [1, Theorems 1 and 2, pp. 115f]. �

Now we start the investigation of the optimization problems (2.2) and (2.3) by deriving a nec-

essary condition for local optimality.

The main ideas of the proofs of the following Lemma 2.1.2 and Proposition 2.1.4 are already

contained in [13].
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Lemma 2.1.2 (Necessary condition for local optimality)

For U an induced subgraph of G let x ∈ SU be a locally optimal solution of φU and H = Hx be

the dependent induced subgraph.

Then the following equation holds for all i ∈ V (H):

2aixi +
∑

j∈NH(i)

bijxj = 2φU(x). (2.4)

Proof: By Lemma 2.1.1, case c), φU (x) = φHx(x). In this proof, we denote for x ∈ Rn≥0,

x 6= 0, the vector x̃ that is obtained from x by deleting all components with xi = 0. Then

there is a rx ∈ N, rx ≤ n such that x̃ ∈ Rrx>0.

For Hx consider the auxiliary form ψHx : Rrx≥0 7→ R

ψHx(z) =

∑
i∈V (Hx)

aiz
2
i +

∑
ij∈E(Hx)

bijzizj∑
i∈V (Hx)

zi

2 .

It is easy to be seen that ψHx(z) = ψHx(λz) for all z ∈ Rrx≥0 and for all λ > 0.

If x is a local optimal solution of φU , then x̃ will be one of ψHx , too. Moreover, x̃ is an

interior point of the positive orthant of Rrx . Thus, all partial derivatives of ψHx must be

zero, and for all i ∈ V (Hx) yield ∂
∂x̃i
ψHx(x̃) = 0

Quotient rule⇐⇒

2aixi +
∑
j∈NHx (i)

bijxj

∑
j∈V (Hx)

xj

2

︸ ︷︷ ︸
=1

=

∑
j∈V (Hx)

ajx
2
j +

∑
jk∈E(Hx)

bjk xjxk

 · 2 ·
∑
j∈V (Hx)

xj


︸ ︷︷ ︸

=1

⇐⇒ 2aixi +
∑
j∈NHx (i)

bijxj = 2φHx(x) = 2φU (x),

which completes the proof. �

Using this condition of local optimality, we derive a lower bound for f(U).

Corollary 2.1.3

Let U be an induced subgraph of G, and let x ∈ SU be a minimal solution of φU . H = Hx

denotes the depending subgraph. Suppose ai > 0 for i ∈ V (G) and bij ≥ 0 for ij ∈ E(G), and

set b = min
ij∈E(U)

bij and A = max
i∈V (U)

ai.

Then the following bound can be derived:

1

f(U)
≤
∑

i∈V (H)

1

ai
− b

b+ 2A

∑
i∈V (H),

dH(i)≥1

1

ai
. (2.5)
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If additionally H is edgeless then it follows

1

f(U)
=
∑

i∈V (H)

1

ai
.

Proof: x ∈ SU is a minimal solution of φU ; thus, the necessary condition of optimality in

Lemma 2.1.2 holds for all i ∈ V (H):

2aixi +
∑

j∈NH(i)

bijxj = 2f(U).

For an isolated vertex i ∈ V (H) the value xi can be calculated by xi = f(U)
ai

.

The vector x ∈ SH satisfies
∑

i∈V (H)

xi = 1. It follows

1− b
2A+b = 2A

2A+b

∑
i∈V (H)

xi = 2A
2A+bf(U)

∑
i∈V (H),

dH(i)=0

1

ai
+ 2A

2A+b

∑
i∈V (H),

dH(i)≥1

f(U)

ai
−
∑

j∈NH(i)

bij
2ai

xj


≤ 2A

2A+bf(U)
∑

i∈V (H)

1

ai
− 2A

2A+b
b

2A

∑
i∈V (H)

dH(i)≥1

∑
j∈NH(i)

xj

≤ 2A
2A+bf(U)

∑
i∈V (H)

1

ai
− b

2A+b

∑
j∈V (H),

dH(j)≥1

dH(j)︸ ︷︷ ︸
≥1

xj

≤ 2A
2A+bf(U)

∑
i∈V (H)

1

ai
− b

2A+b

1−
∑

j∈V (H),
dH(j)=0

xj



= 2A
2A+bf(U)

∑
i∈V (H)

1

ai
− b

2A+b

1−
∑

i∈V (H)

f(U)

ai
+
∑

j∈V (H),
dH(j)≥1

f(U)

ai


= f(U)

∑
i∈V (H)

1

ai
− b

2A+bf(U)
∑

j∈V (H),
dH(j)≥1

1

ai
− b

2A+ b
.

If H is edgeless, then the second sums in all terms are omitted because there is no vertex

i ∈ V (H) with dH(i) ≥ 1, and equality holds everywhere. �

Next, we transfer the necessary condition for optimality to the condition C(F ) on Hx. Note

that ai = 1
wi

for i ∈ V (G); thus, the condition onto the parameters a’s and b’s is denoted as

follows:

Definition (C(F ))

Let F be an arbitrary graph, then the condition C(F ) is defined as follows:

For each induced subgraph U of G isomorphic to F there is a proper vertex partition of V (U)
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into V1 and V2 fulfilling the inequality

ν2
2

∑
i∈V (U1)

ai + ν2
1

∑
i∈V (U2)

ai + ν2
2

∑
ij∈E(U1)

bij + ν2
1

∑
ij∈E(U2)

bij ≤ ν1ν2

∑
ij∈E∗

bij , (C(F ))

where U1 = U [V1] and U2 = U [V2] denote the induced subgraphs on ν1 ≥ 1 and ν2 ≥ 1 vertices,

respectively. E∗ = {ij ∈ E(U) : i ∈ V1, j ∈ V2} is the set of edges of U between V1 and V2.

The condition C(F ) leads to a condition for the optimal subgraph Hx.

Proposition 2.1.4 (Prohibited subgraphs of G)

Let F be a finite family of graphs. If C(F ) is fulfilled for all F ∈ F , then there exists a minimal

solution x ∈ SG of (2.2), i. e. φG(x) = f(G), such that Hx = G[Xx] is F-free.

Proof: We chose an x ∈ SG such that φG(x) = f(G) and |V (Hx)| is as small as possible.

Assume Hx contains U isomorphic to F ∈ F as induced subgraph, then a new vector x̃ is

obtained by increasing the value of xi for i ∈ V1 and decreasing it for i ∈ V2 such that x̃

remains an element of the set SG, where V1 and V2 are sets from a suitable proper vertex

partition of V (U).

Because C(F ) is fulfilled, there is a proper vertex partition of V (U) into V1 and V2 satisfying

the inequality

ν2
2

∑
i∈V (U1)

ai + ν2
1

∑
i∈V (U2)

ai + ν2
2

∑
ij∈E(U1)

bij + ν2
1

∑
ij∈E(U2)

bij ≤ ν1ν2

∑
ij∈E∗

bij .

Choose ε > 0 such that x̃i := xi + ε
ν1
≤ 1 for all i ∈ V (U1) and 0 ≤ x̃i := xi − ε

ν2
for all

i ∈ V (U2). Additionally set x̃i := xi for all i /∈ V (U1) ∪ V (U2). We obtain x̃ ∈ SG.

Now, we calculate φG(x̃) and transform it to φG(x) + R with a residual R. According to

φG(x) = f(G), R has some restrictions leading to a contradiction to the assumption that Hx

contains U :

f(G) = φHx(x)

≤ φHx(x̃)

=
∑

i ∈ V (H),
i /∈ V (U)

aix
2
i +

∑
i ∈ V (U1)

ai(xi + ε
ν1

)2 +
∑

i ∈ V (U2)

ai(xi − ε
ν2

)2

+
∑

ij ∈ E(H),
i, j /∈ V (U)

bijxixj +
∑

ij ∈ E(H),
i ∈ V (U1),
j /∈ V (U)

bij(xi + ε
ν1

)xj

+
∑

ij ∈ E(H),
i ∈ V (U2),
j /∈ V (U)

bij(xi − ε
ν2

)xj +
∑

ij ∈ E(H),
i, j ∈ V (U1)

bij(xi + ε
ν1

)(xj + ε
ν1

)

+
∑

ij ∈ E(H),
i, j ∈ V (U2)

bij(xi − ε
ν2

)(xj − ε
ν2

) +
∑

ij ∈ E(H),
i ∈ V (U1),
j ∈ V (U2)

bij(xi + ε
ν1

)(xj − ε
ν2

)
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=
∑

i ∈ V (H)

aix
2
i + 2 ε

ν1

∑
i ∈ V (U1)

aixi + ( εν1 )2
∑

i ∈ V (U1)

ai − 2 ε
ν2

∑
i ∈ V (U2)

aixi + ( εν2 )2
∑

i ∈ V (U2)

ai

+
∑

ij ∈ E(H)

bijxixj +
∑

ij ∈ E(H),
i ∈ V (U1),
j /∈ V (U)

bij
ε
ν1
xj −

∑
ij ∈ E(H),
i ∈ V (U2),
j /∈ V (U)

bij
ε
ν2
xj

+
∑

ij ∈ E(H),
i, j ∈ V (U1)

bij
ε
ν1

(xi + xj)−
∑

ij ∈ E(H),
i, j ∈ V (U2)

bij
ε
ν2

(xi + xj) + ( εν1 )2
∑

ij ∈ E(H),
i, j ∈ V (U1)

bij + ( εν2 )2
∑

ij ∈ E(H),
i, j ∈ V (U2)

bij

+
∑

ij ∈ E(H),
i ∈ V (U1),
j ∈ V (U2)

bij
ε
ν1
xj −

∑
ij ∈ E(H),
i ∈ V (U1),
j ∈ V (U2)

bij
ε
ν2
xi − ε

ν1
ε
ν2

∑
ij ∈ E(H),
i ∈ V (U1),
j ∈ V (U2)

bij

= f(G) + ( εν1 )2
∑

i ∈ V (U1)

ai + ( εν2 )2
∑

i ∈ V (U2)

ai + ( εν1 )2
∑

ij ∈ E(H),
i, j ∈ V (U1)

bij + ( εν2 )2
∑

ij ∈ E(H),
i, j ∈ V (U2)

bij − ε
ν1

ε
ν2

∑
ij ∈ E(H),
i ∈ V (U1),
j ∈ V (U2)

bij

+ ε
ν1

∑
i ∈ V (U1)

(
2aixi +

∑
j ∈ NH (i)

bijxj

)
︸ ︷︷ ︸

=2φG(x), by Lemma 2.1.2

− ε
ν2

∑
i ∈ V (U2)

(
2aixi +

∑
j ∈ NH (i)

bijxj

)
︸ ︷︷ ︸

=2φG(x), by Lemma 2.1.2

= f(G) + ε2

(
1
ν21

∑
i ∈ V (U1)

ai + 1
ν22

∑
i ∈ V (U2)

ai + 1
ν21

∑
ij ∈ E(U1)

bij + 1
ν22

∑
ij ∈ E(U2)

bij − 1
ν1ν2

∑
ij ∈ E

∗

bij

)
+ ε

ν1
ν12φG(x)− ε

ν2
ν22φG(x)

= f(G) + ε2

ν21ν
2
2

(
ν2

2

∑
i ∈ V (U1)

ai + ν2
1

∑
i ∈ V (U2)

ai + ν2
2

∑
ij ∈ E(U1)

bij + ν2
1

∑
ij ∈ E(U2)

bij − ν1ν2

∑
ij ∈ E

∗

bij

)
.

C(F ) is fulfilled and x is a minimal solution. Thus

ν2
2

∑
i∈V (U1)

ai + ν2
1

∑
i∈V (U2)

ai + ν2
2

∑
ij∈E(U1)

bij + ν2
1

∑
ij∈E(U2)

bij − ν1ν2

∑
ij∈E∗

bij = 0,

and x̃ is also a minimal solution for all ε making sense.

Suppose ε is chosen maximal, then there is at least one i ∈ V (U1) with x̃i := xi + ε
ν1

= 1,

i. e. |V (Hx̃)| = 1, or an i ∈ V (U2) with x̃i := xi − ε
ν2

= 0, i. e. i /∈ V (Hx̃). In both cases

|V (Hx̃)| < |V (Hx)|, a contradiction to the choice of x, because |V (Hx)| has not been chosen

to be as small as possible; thus, Hx must be F-free. �

Remark 2.1.5 We can analogously proof the proceeding lemma for the case that x ∈ SG is a

maximal solution of φG(x):

Let F be an arbitrary graph. For each induced subgraph U of G isomorphic to F there is a

certain proper vertex partition of V (U) into V1 and V2. Let U1 = U [V1] and U2 = U [V2] denote

the induced subgraphs on ν1 ≥ 1 and ν2 ≥ 1 vertices, respectively. Let E∗ be the set of edges

of U between V1 and V2, i. e. E∗ = {ij ∈ E(U) : i ∈ V1, j ∈ V2}.

If for such a vertex partition of V (U) the inequality

ν2
2

∑
i∈V (U1)

ai + ν2
1

∑
i∈V (U2)

ai + ν2
2

∑
ij∈E(U1)

bij + ν2
1

∑
ij∈E(U2)

bij ≥ ν1ν2

∑
ij∈E∗

bij (2.6)

holds, then there exists a maximal solution x ∈ SG of (2.3), i. e. φG(x) = g(G), such that Hx

is F -free. Note the reversed inequality sign in (2.6).
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Remark 2.1.6 If we suppose that x ∈ SG is a maximal solution of φG, i. e. φG(x) = g(G),

then by Remark 2.1.5 the inequality (2.6) differs from the condition C(F ) only by the reversed

inequality sign, which can be changed back by inverting the signs of all parameters a’s and b’s.

Note that g(G) = − min
x∈SG

∑
i∈V (G)

(−ai)x2
i +

∑
ij∈E(G)

(−bij)xixj.

Thus, we can replace the optimization problem g(G) in (2.3) by minimizing φG as in (2.2).

For this, we only have to invert the signs of all parameters a’s and b’s.

Therefore, the investigation of the minimum and f(G) will be sufficient, and we may restrict

to that case.

At this point, the proof of Theorem 2 is given. For the convenience of the reader the theorem

from page 3 is recapitulated below.

Theorem 2

Let F = {F1, . . . , Fp} be a finite family of graphs with K1 /∈ F , and let wi > 0 for i ∈ V (G)

and bij ≥ 0 for ij ∈ E(G) be the weights on the vertices and egdes. Denote the minima over

the edge and vertex weights by b = min
ij∈E(G)

bij and w = min
i∈V (G)

wi, respectively.

If C(F1), . . . , C(Fp) are fulfilled, then there is an F-free induced subgraph H of G such that

w(H)− bw

2 + bw
·
∑

i∈V (H),
dH(i)≥1

wi ≥

∑
i∈V (G)

xi

2

∑
i∈V (G)

x2
i

wi
+
∑

ij∈E(G)

bijxixj

for all real xi ≥ 0 with i ∈ V (G), satisfying
∑

i xi 6= 0.

Proof: (of Theorem 2) Let x ∈ SG be a minimal solution of (2.2), i. e. φG(x) = f(G),

we considered H = G[Xx] as the subgraph of G obtained by deleting the vertices i ∈ V (G)

with xi = 0.

The conditions C(F1), . . . , C(Fp) for a finite family F = {F1, . . . , Fp} are fulfilled; thus, H

can be chosen to be a F-free induced subgraph of G by Proposition 2.1.4.

Finally with Corollary 2.1.3 we obtain for all z ∈ Rn≥0 satisfying z 6= 0:

w(H)− bw

2 + bw

∑
i∈V (H),
dH(i)≥1

wi =
∑

i∈V (H)

1

ai
− b

b+ 2 max
i∈V (G)

ai

∑
i∈V (H),

dH(i)≥1

1

ai

≥ 1

f(G)
=

1

φG(x)

≥ 1

φG(y)
=

( ∑
i∈V (G)

zi

)2

∑
i∈V (G)

z2i
wi

+
∑

ij∈E(G)

bijzizj
,
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where y is the normalised vector z, i. e. y := z∑
i zi
∈ SG. Hx is the F-free induced subgraph

of G satisfying the assumption. �

Now, we investigate the Algorithm 1 from section 1.5:

Algorithm 1: Algorithm for a bound on w(H)

Input: Vector x with real xi ≥ 0 for i ∈ V (G), satisfying
∑

i xi 6= 0.
Output: An F-free induced subgraph H of G fulfilling the inequality (1.10).

1 x ← x; H ← getH(x);
2 while there is an induced subgraph F ′ of H isomorphic to an F ∈ F do
3 x ← generateNewVector(x,F ′);
4 H ← getH(x);

5 end

Step 2 has already been discussed; the remaining steps 1, 3, and 4 will be explained in the

following.

Algorithm 2: Function constructs H

1 Function getH(x):
2 H ← Hx that is the induced subgraph of G obtained by deleting the vertices

i ∈ V (G) with xi = 0, i. e. Hx = G[Xx] where Xx = {i ∈ V (G) : xi > 0}.
3 end

Algorithm 3: Function constructs a new vector x

Input: An induced subgraph F ′ of H isomorphic to a F ∈ F .

1 Function generateNewVector(x,F ′):
2 According to C(F ) there is a proper vertex partition such that the inequality is

fulfilled. Suppose that U1 and U2 are indexed such that

1
ν1

∑
i∈V (U1)

(
2aixi +

∑
j∈NH(i)

bijxj

)
≤ 1

ν2

∑
i∈V (U2)

(
2aixi +

∑
j∈NH(i)

bijxj

)
.

3 Choose ε > 0 maximal such that 0 ≤ x̃i := xi − ε
ν2

for all i ∈ V (U2). Additionally set
x̃i := xi + ε

ν1
≤ 1 for all i ∈ V (U1) and x̃i := xi for all i /∈ V (U1) ∪ V (U2).

4 x ← x̃

5 end

Proposition 2.1.7

Suppose that Algorithm 1 generates the sequences x(k) and H(k) with k = 0, 1, 2, . . .

It follows:

a) V (H(k+1)) ( V (H(k)) for all k,

b) The algorithm terminates; thus, there is a r ∈ N0 such that k = 0, 1, . . . , r,

c) φG(y(k+1)) ≥ φG(y(k)) for all k = 0, 1, . . . , r, where yi = xi∑
xj

for i ∈ V (G),

d) The algorithm outputs an F-free induced subgraph H of G fulfilling the inequality (1.10).
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Proof: Note that the condition C(F ) is fulfilled and symmetric. Thus, a suitable indexing

is possible in step 2 of Algorithm 3.

a) We chose ε > 0 maximal, i. e. there is an i ∈ V (U2) such that x̃i = 0. Note that x̃j = 0

for all j ∈ V (G) with xj = 0. Thus, the new subgraph H(k+1) has at least one vertex less,

and it yields V (H(k+1)) ( V (H(k)).

b) According to a), |V (H(k+1))| < |V (H(k))| for all k; thus, the loop condition in step 2 of

Algorithm 1 cannot always be true, and Algorithm 1 will terminate.

c) Let us again consider the proof of Proposition 2.1.4, it follows

φHy(ỹ) = φHy(y) + ε2

(
1
ν21

∑
i∈V (U1)

ai + 1
ν22

∑
i∈V (U2)

ai + 1
ν21

∑
ij∈E(U1)

bij + 1
ν22

∑
ij∈E(U2)

bij − 1
ν1ν2

∑
ij∈E∗

bij

)
︸ ︷︷ ︸

≤0, because C(F ) is fulfilled,

+ ε
ν1

∑
i∈V (U1)

(
2aiyi +

∑
j∈NH(i)

bijyj

)
− ε

ν2

∑
i∈V (U2)

(
2aiyi +

∑
j∈NH(i)

bijyj

)
︸ ︷︷ ︸

≤0, because of step 2 in Algorithm 3

≤ φHy(y).

Note that ỹi = x̃i∑
xj

for all i ∈ V (G) and
∑

j xj =
∑

j x̃j . Thus, φG(y(k+1)) ≥ φG(y(k))

for all k = 0, 1, . . . , r.

d) Suppose Algorithm 1 terminates after r ∈ N0 loop passings. Let y
(r)
i =

x
(r)
i∑
x
(r)
j

for i ∈ V (G)

be the normalised vector of x(r), then it follows∑
i∈V (G)

x
(0)
i

2

∑
i∈V (G)

(
x
(0)
i

)2
wi

+
∑

ij∈E(G)

bijx
(0)
i x

(0)
j

=
1

φG(y(0))

c)

≤ 1

φG(y(r)))

Lemma 2.1.1, c)
=

1

φH(r)(y(r))

≤ 1

f(H(r))

Corollary 2.1.3
≤

∑
i∈V (H̃)

1

ai
− b

b+ 2A

∑
i∈V (H̃),

dH̃(i)≥1

1

ai

≤
∑

i∈V (H̃)

1

ai
≤

∑
i∈V (H(r))

1

ai
,

where H̃ denotes the induced subgraph obtained from an optimal solution of f(H). �

Remark 2.1.8 Step 3 and 4 in Algorithm 1 are O(1) because all calculations depend on

|V (F ′)|, not on |V (G)|.
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2.2 Minimum value and the proof of Theorem 1

After considering the optimal solutions of the optimization problem f(G), we will investigate the

value of f(G) in this section, and describe it in a few propositions. The first two Propositions

2.2.1 and 2.2.2 have already been contained in [13] in a modified way. For cases where H

consists of multiple components, a lemma indicates how to solve the problem. Finally, the proof

of Theorem 1 is given.

For the following propositions let x ∈ SG be a minimal solution of (2.2), i. e. φG(x) = f(G).

Again, H = Hx = G[Xx] denotes the subgraph of G obtained by deleting the vertices i ∈ V (G)

with xi = 0.

Proposition 2.2.1 (Independent sets)

Let x ∈ SG be a minimal solution of φG, and H = Hx the depending subgraph. Denote

a = mini ai, and suppose H is an edgeless graph.

a) If a ≤ 0, then f(G) = a, and this minimum is attained by setting xi = 1 for one vertex

i ∈ V (G) with ai = a and xj = 0 for j 6= i. If additionally a = 0, the minimum can also

be attained by freely choosing x ∈ SG fulfilling xi = 0 for all i ∈ V (G) not belonging to an

independent set all of whose vertices j have aj = 0.

b) If a > 0, then

f(G) =
1

max

(∑
i∈S

1

ai

) , (2.7)

where the maximum is taken over all non-empty independent sets S of G. The minimum

in f(G) is attained by setting xi = f(G)
ai

for i in the optimal independent set S, and xi = 0

otherwise.

Proof: The necessary condition of optimality in Lemma 2.1.2 yields

2aixi +
∑

j∈NH(i)

bijxj = 2f(G) (2.8)

for all i ∈ V (H). H is edgeless; thus, there are no neighbours of i in H, and it follows∑
j∈NH(i)

bijxj = 0.

We get

f(G) = aixi, for all i ∈ V (H). (2.9)
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a) Let x ∈ SG such that φG attains its minimum. It follows

f(G) = φH(x) =
∑

i∈V (H)

aix
2
i +

∑
ij∈E(H)

bijxixj︸ ︷︷ ︸
=0

≥ a
∑

i∈V (H)

x2
i +2a

∑
i,j∈V (H)
i<j

xixj

︸ ︷︷ ︸
≤0, because a ≤ 0

= a ·

∑
i∈V (H)

xi

2

= a.

Lemma 2.1.1, case e) yields f(G) = a. This minimum is attained by choosing i ∈ V (G)

so that ai = a, and let x ∈ SG with xi = 1 and xj = 0 for j 6= i.

If f(G) = a = 0, then equation (2.9) is zero, and it follows ai = 0 for i ∈ V (H). The

choice of xi for i ∈ V (H) is arbitrary.

b) Note that ai ≥ a > 0, and (2.9) is positive. Because of x ∈ SG, setting xi = f(G)
ai

for all

i ∈ V (H) yields

1 =
∑

i∈V (H)

xi = f(G)
∑

i∈V (H)

1

ai
,

which completes the proof. �

The results of the previous Proposition 2.2.1 for the case that ai = dG(i) for all i ∈ V (G) are

partially presented in [13, Theorem 5].

For the next case let H be a complete graph. By Table 1.3.9, ai < 0 suffices to force H being

complete. Note that minimizing with negative a’s is the same as maximizing φG with positive

a’s. Thus, the following Proposition 2.2.2 is a generalization of [13, Theorem 4], where the

maximum is already completely discussed in case that ai = dG(i) for i ∈ V (G).

Proposition 2.2.2 (Generalised result of T. S. Motzkin and E. G. Straus [13])

Let x ∈ SG be a minimal solution of φG, and H = Hx the depending subgraph. Denote

a = min
i∈V (G)

ai and b = min
ij∈E(G)

bij, and suppose H is a complete graph.

a) If 2a ≤ b, then f(G) = a, and this minimum is attained by setting xi = 1 for one vertex

i ∈ V (G) with ai = a and xj = 0 for j 6= i.

b) If 2a > b, then

f(G) ≥ 1

2

b+
1

max
∑
i∈C

1
2ai−b

 (2.10)

and the maximum is taken over all cliques C of G.

c) If additionally b = bij for all ij ∈ E(G), then equality holds in (2.10), and the minimum is

attained by setting xi = 2f(G)−b
2ai−b for i in the optimal clique C and xi = 0 otherwise.
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Proof: The necessary condition of optimality in Lemma 2.1.2 yields

2aixi +
∑

j∈NH(i)

bijxj = 2f(G) (2.11)

for all i ∈ V (H). H is complete; thus, the neighbourhood of i is V (H) \ {i}, and it follows∑
j∈NH(i)

xj = 1− xi.

We obtain

2aixi + b(1− xi) ≤ 2aixi +
∑

j∈NH(i)

bijxj = 2f(G);

hence, it follows

(2ai − b)xi ≤ 2f(G)− b, for all i ∈ V (H). (2.12)

a) Let x ∈ SG such that φG attains its minimum. It follows

f(G) = φH(x) =
∑

i∈V (H)

aix
2
i +

∑
ij∈E(H)

bijxixj ≥ a
∑

i∈V (H)

x2
i + 2a

∑
ij∈E(H)

xixj = a ·

∑
i∈V (H)

xi

2

= a,

because H is a complete graph.

Lemma 2.1.1, case e) yields f(G) = a. This minimum is attained by choosing i ∈ V (G)

so that ai = a, and let x ∈ SG with xi = 1 and xj = 0 for j 6= i.

b) Note that 2ai ≥ 2a > b, and both terms in (2.12) are positive. Because of x ∈ SG and by

(2.12), the estimation xi ≤ 2f(G)−b
2ai−b for all i ∈ V (H) yields

1 =
∑

i∈V (H)

xi ≤ (2f(G)− b))
∑

i∈V (H)

1
2ai−b .

This implies

f(G) ≥ 1

2

b+
1∑

i∈V (H)

1
2ai−b

 ,

and the sum has to be maximal.

c) If b = bij for all ij ∈ E(G), then equality holds in (2.12), and therefore equality also holds

in all inequalities in the proof of b). �

After considering the simple cases that H is complete or edgeless, further investigations lead to

the question of how to proceed if H consists of multiple components. For this, the following

lemma will give an answer.
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Lemma 2.2.3 (Splitting lemma for components of H)

Suppose ai > 0 for i ∈ V (G) and bij ≥ 0 for ij ∈ E(G).

Let x ∈ SG be a minimal solution of (2.2), i. e. φG(x) = f(G). H = Hx denotes the subgraph

of G obtained by deleting the vertices i ∈ V (G) with xi = 0.

If H consist of components H1, . . . ,Hr, then

1

f(G)
=

1

f(H1)
+ · · ·+ 1

f(Hr)
.

Proof: For x ∈ SG such that φG attains its minimum, let zs =
∑

j∈V (Hs)

xj > 0 for s = 1, . . . , r,

and substitute yi = xi
zs
> 0 for i ∈ V (Hs).

Note that z1 + · · ·+ zr = 1 and
∑

j∈V (Hs)

yj = 1 for s = 1, . . . , r.

It follows

f(G) = φG(x)
Lemma 2.1.1 c)

= φH(x)

=

r∑
s=1

∑
i∈V (Hs)

aix
2
i +

∑
ij∈E(Hs)

bijxixj

 =

r∑
s=1

z2
s

∑
i∈V (Hs)

aiy
2
i +

∑
ij∈E(Hs)

bijyiyj


=

r∑
s=1

(
z2
sφHs(x)

)
≥

r∑
s=1

z2
sf(Hs)

≥ min
c∈Sr

r∑
s=1

c2
sf(Hs).

Now let z = (z1, . . . , zr) ∈ Sr be a minimal solution of min
c∈Sr

r∑
s=1

c2
sf(Hs), and for s = 1, . . . , r

let f(Hs) = φHs

(
y(s)
)

for an arbitrary y(s) ∈ Sns .

Let wi = zsy
(s)
i for i ∈ V (Hs), and wi = 0 otherwise. It is easy to be seen that w ∈ SG.

Then it yields:

min
c∈Sr

r∑
s=1

c2
sf(Hs) =

r∑
s=1

z2
sφHs

(
y(s)
)

=

r∑
s=1

∑
i∈V (Hs)

ai(zsy
(s)
i )2 +

∑
ij∈E(Hs)

bij(zsy
(s)
i )(zsy

(s)
j )


=

r∑
s=1

∑
i∈V (Hs)

aiw
2
i +

∑
ij∈E(Hs)

bijwiwj


= φH(w) ≥ f(H)

Lemma 2.1.1 d)

≥ f(G).

Hence, we obtain f(G) = min
c∈Sr

r∑
s=1

c2
sf(Hs).

Note that f(Hs) > 0 for s = 1, . . . , r because all the parameters are positive.
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We consider the relaxed problem

min

{
r∑
s=1

c2
sf(Hs) | c1 + · · ·+ cr = 1

}

and the Lagrange function

L =
r∑
s=1

c2
sf(Hs) + 2ρ

(
1−

r∑
s=1

cs

)

with Lagrange multiplier 2ρ ∈ R.

The necessary condition of optimality is ∇csL = 2csf(Hs) − 2ρ = 0 for s = 1, . . . , r. Thus,

it follows cs = ρ
f(Hs) , and with c1 + · · ·+ cr = 1, we obtain

1

ρ
=

1

ρ

r∑
s=1

cs =
r∑
s=1

1

f(Hs)
> 0,

so ρ > 0, and thereby cs > 0 for s = 1, . . . , r.

It follows:

f(G) =
r∑
s=1

c2
sf(Hs) =

r∑
s=1

ρ2

f(Hs)2
f(Hs) = ρ2

r∑
s=1

1

f(Hs)

=

(
r∑
s=1

1

f(Hs)

)−2 r∑
s=1

1

f(Hs)
=

(
r∑
s=1

1

f(Hs)

)−1

,

which completes the proof. �

Next, we use the proceeding lemma for the case that C(P3) holds. For this case, H can be chosen

to be the induced union of complete graphs as it can be seen in Lemma 1.3.3 and Example 1.3.4.

Corollary 2.2.4 (Union of independent cliques)

Let x ∈ SG be a minimal solution of φG, and H = Hx the depending subgraph. Let bij ≥
2 min{ai, aj} for ij ∈ E(G), and suppose H is the induced union of complete graphs.

Then H can be chosen to be an edgeless graph, and it yields

f(G) =
1

max

(∑
i∈S

1

ai

) , (2.13)

where the maximum is taken over all non-empty independent sets S of G. The minimum in

f(G) is attained by setting xi = f(G)
ai

for i in the optimal independent set S, and xi = 0

otherwise.

Proof: H may consist of multiple components named Hs for s = 1, . . . , r for a suitable

r ∈ N. Using Lemma 2.2.3 it follows 1
f(G) =

∑
s

1
f(Hs) .

Consider a component Hs on more than one vertex, and calculate f(Hs) by Proposition 2.2.2.

Because bkl ≥ min {2ak, 2al} ≥ 2 min
i∈V (Hs)

ai for all kl ∈ E(Hs), the minimum can be attained
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by setting xi = 1, and Hs can be chosen to have only one vertex.

Hence, H can be chosen to be an edgeless graph, and Proposition 2.2.1 completes the

proof. �

It has not yet been possible for us to calculate f(G) among more general preconditions than

the treated ones. Merging the parameters bij for ij ∈ E(G) to a single parameter b will help to

attack this problem, but we would lose the benefit of the non-uniform parameters b’s.

Therefore the meaning of the value f(G) for the optimization problem remains obscure.

For concluding this section we proof Theorem 1:

Theorem 1

Let wi > 0 for i ∈ V (G). Then there is an independent set I of G such that

w(I) ≥

∑
i∈V (G)

xi

2

∑
i∈V (G)

x2
i

wi
+
∑

ij∈E(G)

max
{

1
2wi

+ 1
wj
, 1
wi

+ 1
2wj

,min
{

2
wi
, 2
wj

}}
xixj

for all real xi ≥ 0 with i ∈ V (G), satisfying
∑

i xi 6= 0.

Proof: (of Theorem 1) Denote bij = max
{

1
2wi

+ 1
wj
, 1
wi

+ 1
2wj

,min
{

2
wi
, 2
wj

}}
for all

ij ∈ E(G).

In Remark 1.3.5 it is shown that for bij ≥ max
{

1
2ai + aj , ai + 1

2aj
}

the condition C(P3) is

fulfilled. Thus, H can be chosen to be P3-free. By Lemma 1.3.3, H is the induced union of

complete graphs.

Because bij ≥ min {2ai, 2aj} we can apply Corollary 2.2.4 and

f(G) =
1

max

(∑
i∈S

1

ai

) , (2.14)

where the maximum is taken over all non-empty independent sets S of G.

It follows for all z ∈ Rn≥0 satisfying z 6= 0:

w(I) =
∑
i∈I

1

ai
=

1

f(G)
≥ 1

φ(y)
=

( ∑
i∈V (G)

xi

)2

∑
i∈V (G)

x2i
wi

+
∑

ij∈E(G)

bijxixj

where y is the normalised vector z, i. e. y := z∑
i zi
∈ SG. �



3 Remarks and Conclusions

Motivated by the quadratic problem formulation of the maximum clique problem of T. S. Motzkin

and E. G. Straus [13], I investigated a generalised quadratic form on parameters a’s and b’s with

regard to the minimum f(G). Using a necessary condition for optimality, I was able to find a

relation between the minimal solution x ∈ SG and its depending induced subgraph Hx = G[Xx]

of G. With that result it was possible to describe the condition C(F ) that demand H to be

F-free. In some special cases the calculation of f(G) was possible; for example the results of

quadratic forms mentioned by T. S. Motzkin and E. G. Straus [13] could be generalised.

Using these results of quadratic forms, some applications on weighted graphs and on F-free

induced subgraphs of maximum weight could be received. The proceeding investigations and

the conditions C(F ) were required to give a general framework, which is Theorem 2, for deriving

an abundance of lower bounds for these induced subgraphs. Hereby, the known lower bound for

the maximum weight independent set problem in Statement 2 by Gibbons et al. in [6] followed

directly. The impact of this bound was presented by some investigations of other well known

bounds. Finally, I was able to improve the result of Gibbons et al. and got Theorem 1.

It has not yet been possible for me to calculate f(G) in most cases. Merging the parameters bij
for ij ∈ E(G) to a single parameter b will help to attack this problem, but one would lose the

benefit of the non-uniform parameters b’s. Lemma 2.2.3 for the components of H can be useful

to solve the problem of calculating f(G) for some more cases e. g. for G being a linear forest.

The calculation of f(G) for a simple path is a problem that I have not been able to solve yet.

Therefore, the meaning of the value f(G) for the optimization problem remains obscure. That

would be an issue for future investigations.

Another related issue that seems worth investigating is the algebraic approach. Considering the

necessary condition for optimality in Lemma 2.1.2 leads to the idea that it is equivalent to the

homogeneous linear equation system for V (H) = {i1, i2, . . . , ik} and f := f(G)


2ai1 βi1i2 . . . βi1ik −2

βi1i2 2ai2
...

...
...

. . .
...

...

βi1ik . . . . . . 2aik −2




xi1
...
...

xik
f

 =
−→
0 ,

where βisit =

{
1
2bisit , if isit ∈ E(H),

0, else.
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